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The Preisach model with symmetric elementary hysteresis loops and uncorrelated input is treated analyti-
cally in detail. It is shown that the appearance of long-time tails in the output correlations is a quite general
feature of this model. The exponent � of the algebraic decay t−�, which may take any positive value, is
determined by the tails of the input and the Preisach density. We identify the system classes leading to identical
algebraic tails. These results imply the occurrence of 1 / f noise for a large class of hysteretic systems.
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I. INTRODUCTION

In a previous paper �Part I, �1�� we derived general ex-
pressions for the spectral density of the output of Preisach
transducers for uncorrelated input. In an explicit example we
were able to show the occurrence of a power-law decay of
the corresponding autocorrelation function. The output of the
Preisach model can be considered as a superposition of the
output of infinitely many elementary hysteresis loops �2�. In
the general model these loops are those of nonideal relays
with arbitrary switching values � and �. In many physical
situations, however, the elementary loops can be assumed to
be symmetric, which for the relay loops of the Preisach
model means �=−�. Apart from its general importance this
case is interesting because it allows for a rather complete
understanding of the output properties for uncorrelated input.
This symmetric model has been considered previously for
input generated by an Ornstein-Uhlenbeck process �3�. In
this case, however, explicit analytic results for the spectral
density of the output cannot be given. In contrast, for uncor-
related input we are able to provide exact results for the
spectral density and for the decay of the autocorrelation
function. Since this case is considerably simpler, we are able

to provide here a rather complete picture of the mechanisms
for the long-time tails. Especially the origin and the range of
possible exponents of the algebraic decay will be evaluated
systematically and the appearance of 1 / f noise for a wide
range of systems will be shown analytically.

II. DEFINITIONS

We provide here briefly the definitions needed for the pre-
sentation of our results below. More details can be found in
Part I �1�. The Preisach model is characterized by the so-
called Preisach operator P, which acts on an input time se-
ries x�t� to produce the output y�t�. In the symmetric case the
input-output relation can be written as

y�t� = P�x�t�� =� d�����s�,−��x�t�� , �1�

where s�,−��x�t��� �−1, +1� is the output of a symmetric
nonideal relay with initial state s���t0�=s0 for a given input
time series x�t�, t� t0. It is characterized by a symmetric,
rectangular elementary hysteresis loop, for which the output
can be written as

s�,−��x�t�� = �+ 1 if there exists t1 � �t0,t� such that x�t1� � � and x��� 	 − � for all � � �t1,t�
− 1 if there exists t1 � �t0,t� such that x�t1� 
 − � and x��� � � for all � � �t1,t�
s0 � �− 1, + 1� if − � � x��� � � for all � � �t0,t�

	 . �2�

We consider input and output sequences in discrete time
t=0,1 ,2 , . . ., with elements �x�t�� and �y�t��, respectively.
The results presented below are all obtained for �x�t�� being
a stochastic process consisting of independent identically
distributed �i.i.d.� random variables with density ��x�. We
consider two-point correlation functions of the output in the
stationary case given by

C��� = 
y�0�y���� − 
y�2, �3�

respectively, its Z transform

C̃�z� = �
�=0




C���z−�. �4�

From the latter the power spectral density of the output*radons@physik.tu-chemnitz.de
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S��� = �
�=−





C���ei�� = lim
N→


 1

N
��

t=1

N

y�t�ei�t�2� , �5�

with −���
�, can be obtained as

S��� = 2 Re�C̃�z = ei��� − C�0� , �6�

with C�0�=limz→
 C̃�z�.

III. RESULTS

A. General results

In our previous paper �Part I, �1�� we derived for uncor-
related input the following general expression for the Z trans-
form of the output of a symmetric Preisach model:

C̃�z� = �
0




d�����
1

1 − F�− �,����




d�������

�
F�− 
,− ���F���,
�

1 − F�− ��,���
4z

z − F�− ��,���

+ �
0




d�����
F�− 
,− ��F��,
�

1 − F�− �,�� �
0

�

d�������

�
1

1 − F�− ��,���
4z

z − F�− ��,���
, �7�

where F�a ,b� is related to the density of the input ��x� by
F�a ,b�=�a

b��x�dx and ���� is the Preisach density of the
symmetric elementary hysteresis loops. We now assume in
addition that the input distribution is symmetric ��x�
=��−x�. Then by exploiting this symmetry for the integrated
density F, i.e., F�−
 ,−��=F�� ,
� and 1−F�−� ,��
=2F�� ,
�, the expression in Eq. �7� further simplifies to

C̃�z� = �
0




d������
�




d�������
F���,
�
F��,
�

z

z − 1 + 2F���,
�

+ �
0




d������
0

�

d�������
F��,
�
F���,
�

z

z − 1 + 2F���,
�
.

�8�

This expression suggests a further transformation. We define
new variables u�2F�� ,
�, which as function of � de-
creases monotonically with increasing � from u��=0�=1 to
u��=
�=0, and analogously v�2F��� ,
�. Substituting
these into the integrals of Eq. �8�, one obtains

C̃�z� = �
0

1

du�̃�u��
0

u

dv�̃�v�
v
u

z

z − 1 + v

+ �
0

1

du�̃�u��
u

1

dv�̃�v�
u

v

z

z − 1 + v
, �9�

where the expression

�̃�u� �
�„��u�…
2�„��u�…

�10�

is an effective Preisach density, with ��u� the inverse func-
tion of u���=2F�� ,
�. One easily verifies that �̃�u� is prop-

erly normalized �0
1du�̃�u�=1, and that a Preisach density

equal to ���� for 0
�
1 and zero elsewhere combined
with a constant input density ��x�= 1

2 for �x�
1 and zero
elsewhere, yields �̃�u�=��1−u�. This is interesting because
first this means that there are classes of systems, i.e., combi-
nations of input and Preisach densities, which yield the same
effective Preisach density �̃�u� and therefore also the same
spectral density of the output. This fact will be exploited in
the following sections. Second, any pair of input density ��x�
and Preisach density ���� is equivalent to one with constant
input density, thus justifying the notion of an effective den-
sity for the resulting �̃�u�. Especially all systems where the
Preisach density ���� and twice the input density ��x� have
the same functional dependence, e.g., both are Gaussian dis-
tributed with the same variance, are equivalent to the case
�̃�u�=1. The latter can be regarded as the representative of
the simplest case with Preisach density ����=1 for 0
�

1 and zero elsewhere, and input density ��x�= 1

2 for �x�

1 and zero elsewhere.

B. Constant Preisach and constant input density

This will also be the first special case for which we can
evaluate the integrals of Eq. �8�, or equivalently, Eq. �9� with
�̃�u�=1. One obtains the exact result

C̃�z� =
3

2
z +

z

2
�z − 1�ln� z − 1

z
� + z�z − 1�Li2� 1

1 − z
� ,

�11�

where Li2�z�=�n=1

 zn /n2=−�0

zdt 1
t ln�1− t� is the Euler diloga-

rithm. Note that in this case C�t=0�=limz→
 C̃�z�= 1
2 . Since

the long-time behavior of C�t� is determined by the behavior

of C̃�z� near z=1, we need the corresponding asymptotic
expansion. This is obtained by inserting the transformation
�4� Li2� 1

1−z �=− �2

6 − 1
2 ln2�z−1�−Li2�1−z� into Eq. �11�, which

results in

C̃�z� �
3

2
+

1

2
�3 −

�2

3
+ ln�z − 1� − ln2�z − 1���z − 1�

+ O��z − 1�2� . �12�

This shows that the first derivative C̃�1��z� of C̃�z� is logarith-
mically divergent near z=1. Indeed one has

C̃�1��z� � −
1

2
ln2�z − 1� −

1

2
ln�z − 1� + 2 −

�2

6
+ O��z − 1�� .

�13�

Applying Karamata’s Tauberian theorem for power series
�7�, analogous to its application in Part I �1�, to the leading

term C̃�1��z��− 1
2 ln2�z−1�, yields for the asymptotic behav-

ior of C�t�,

C�t� � t−2 ln t . �14�

The corresponding behavior in the spectral density at small

frequencies is obtained by expanding S���= C̃�ei��+ C̃�e−i��
− 1

2 with C̃ from Eq. �11� around �=0. One obtains
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S��� �
5

2
+ �� ln � −

�

2
� + O��2� . �15�

Since the Z transform of an exponentially decaying function
C0�t�=bt=exp�−�t� with �= �ln b�, 0�b�1, is given by

C̃0�z�= z
z−b , we see that Eq. �8� can be regarded as the super-

position of infinitely many exponentially decaying contribu-
tions with decay rates ����= �ln�1−2F�� ,
���. The smallest
decay rates, responsible for any long-time tails in C�t�, come
from � values near the maximal value �max �which may be
infinity� since there �����2 F�� ,
�, which becomes zero
as � approaches �max. This argument holds if the range of
possible positive input values �symmetry of ��x�� coincides
with, or is contained in the range of possible threshold val-
ues. This shows that the way F�� ,
�=��


��x�dx behaves for
�→�max determines the form of the long-time tails of the
autocorrelation function. To investigate this effect we con-
sider a whole family of input distributions to a Preisach
model with constant Preisach density.

C. Constant Preisach and power-law input density

To be specific we consider now symmetric input densities
given by ��x�= �

2 �1− �x���−1 for �x�
1, and zero elsewhere.
The parameter � can take any positive value �	0. The
Preisach density � is given by ����=1 for 0
�
1 and
zero elsewhere, so �max=1. For this case u���=2F�� ,1�
= �1−��� and thus ��u�=1−u1/�. From this we get an effec-
tive Preisach density, Eq. �10�, which reads

�̃�u� =
1

�
u−1+1/�. �16�

For this effective density the integrals in Eq. �9� can be
evaluated exactly. One obtains for ��1 the following ex-
pression:

C̃�z� =
z

z − 1

1

�2 − 1
��F�1,�1;�1 + 1;

1

1 − z
�

− F�1,�2;�2 + 1;
1

1 − z
�� , �17�

where F�a ,b ;c ;z� is the hypergeometric function

F�a ,b ;c ;z���k=0

 �a�k�b�k

�c�k

zk

k! , with �a�k= ��a+k�
��a� denoting the

Pochhammer symbol. The parameters �1 and �2 are related
to the exponent � by �1=2 /� and �2=1+1 /�, respectively.
The value for C�t=0� needed for the evaluation of the spec-

trum is given by limz→
 C̃�z�= 1
1+� . As before we have to

study the behavior of the expression Eq. �17� near z=1 in
order to obtain the long-time behavior of the autocorrelation
function. For this purpose we apply a relation connecting the
hypergeometric functions of reciprocal arguments �Eq.
�15.3.7� in �5�� to F�1,� ;�+1; 1

1−z �. For noninteger values of
� one finds

F�1,�;� + 1;
1

1 − z
� = ��1 + ����1 − ���z − 1��

+
��� + 1���� − 1�

����2 �z − 1�

�F�1,1 − �;2 − �;1 − z� . �18�

Using the properties of the gamma function one obtains with
the series expansion of F�1,1−� ;2−� ;1−z� the following
identity:

1

z − 1
F�1,�;� + 1;

1

1 − z
� =

��

sin ��
�z − 1��−1

− ��
k=0



�1 − z�k

k + 1 − �
. �19�

From the right-hand side we see that for a given � the lowest
derivative of this expression, which becomes singular for z
→1, is the nth derivative, where n=int��� is the largest in-
teger smaller than �. This means that for �	1, i.e., �1

��2, in Eq. �17� only the term C̃1�z�= �

�2−1
z

z−1F�1,�1 ;�1

+1; 1
1−z � has to be considered, whereas for 0���1 the term

C̃2�z�= 1
1−�2

z
z−1F�1,�2 ;�2+1; 1

1−z � determines the singular

behavior of C̃�z� or its derivatives as z→1. Denoting by

C̃�n��z�, the nth derivative of C̃�z�, and similarly for C̃1�z� and

C̃2�z�, one finds the following ranges and corresponding sin-
gular behavior for z→1:

2 � � � 
, 0 � �1 � 1:

C̃�z� � C̃1�z� �
�

�2 − 1
��1 + �1���1 − �1��z − 1��1−1,

�20�

1 � � � 2, 1 � �1 � 2:

C̃�1��z� � C̃1
�1��z� �

�

�2 − 1
��1 + �1���1 − �1�

���1 − 1��z − 1��1−2, �21�

1

n
� � �

1

n − 1
, n � �2 � n + 1, n = 2,3, . . . :

C̃�n��z� � C̃2
�n��z� �

1

1 − �2��1 + �2���1 − �2�

�
���2�

���2 − n�
�z − 1��2−n−1, �22�

where for clarity the abbreviations �1=2 /� and �2=1+1 /�
have been used again. Applying again Karamata’s Tauberian
theorem to these expressions, one finds the following
asymptotic behavior for the correlation functions:
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C�t� � �
�

�2 − 1
��2/� + 1�t−2/� for 1 � � � 


1

1 − �2��1/� + 2�t−1−1/� for 0 � � � 1.	
�23�

For deriving these laws we had to exclude the integer values
of � corresponding to �=2,1 , 1

2 , 1
3 , . . .. For integer � the

hypergeometric functions are degenerate and Eq. �19� is
no longer valid. Instead one uses that F�1,m+1;m+2;z� for
m=0,1 ,2 , . . . obeys the relation �6� F�1,m+1;m+2;z�
= �m+1��−1�m

m!
dm

dzm ��1−z�mF�1,1 ;2 ;z��, with F�1,1 ;2 ;z�
=− 1

z ln�1−z�. From this one can derive by induction that

F�1,m + 1;m + 2;z�

= − �m + 1��z−�m+1� ln�1 − z� + �
l=1

m
1

m + 1 − l
z−l� .

�24�

So, for integer �=n+1 Eq. �19� is replaced by

1

z − 1
F�1,n + 1;n + 2;

1

1 − z
�

= �n + 1���1 − z�n ln� z

z − 1
� + �

l=0

n−1
1

n − l
�1 − z�l� .

�25�

Here we see that the nth derivative becomes singular and
diverges asymptotically as �−1�n+1��n+2�ln�z−1� for z→1.
Correspondingly we find

� = 2, �1 = 1: C̃�z� � C̃1�z� � −
2

3
ln�z − 1� ,

� =
1

n
, �2 = 1 + n = 3,4, . . . :

C̃�n��z� � C̃2
�n��z� �

1

1 − �2 �− 1�n+1��n + 2�ln�z − 1� .

�26�

Using Karamata’s theorem for these expressions we find

� = 2, �1 = 1: C�t� �
2

3
t−1, �27�

� =
1

n
, �2 = 1 + n = 3,4, . . . : C�t� �

1

1 − �2��n + 2�t−n−1,

�28�

which is seen to coincide with the law Eq. �23� at the previ-
ously excluded values. Therefore the correlation decay as
given by Eq. �23� is correct for all � values in the indicated
ranges. Only the crossover value �=1 corresponding to �1
=�2=2 had to be excluded from the beginning since there

our starting point, Eq. �17�, is not valid. But the case �=1
has been treated already separately above leading to C�t�
� t−2 ln t, Eq. �14�. Note that by summing up both contribu-
tions in Eq. �23� and extrapolating in an appropriate way to
�=1 would yield by the cancellation of two diverging terms
with opposite sign, a behavior as C�t�� t−2 and thus would
miss just the logarithmic correction present in Eq. �14�.
Equations �14� and �23� constitute one of the main results of
this paper. It says that algebraically decaying correlations are
a quite common feature of the output of hysteretic systems as
described by the Preisach model with uncorrelated input. Be-
fore we consider its consequences in the frequency domain,
we give some more explicit results which can be stated for
special values of the parameter �. There exist infinitely many

parameter values �, where C̃�z�, the Z transform of the out-
put correlation function, can be expressed in terms of el-
ementary functions. To see this, note that if � takes the val-

ues �= 2
k , k�N∖ �2� we get for C̃�z� the expression

C̃�z� =
z

z − 1

k2

4 − k2�2

k
F�1,k;k + 1;

1

1 − z
�

− F�1,1 +
k

2
;2 +

k

2
;

1

1 − z
�� . �29�

The hypergeometric functions F�1,� ;�+1;z� for integer or
half-integer values of � appearing in Eq. �29� reduce to ex-
pressions involving only elementary functions. For integer
values �=n the corresponding formula was given above in
Eq. �24�. For half-integer values a similar formula can be
proved by induction using the properties of the hypergeomet-
ric function under differentiation �Eq. �15.2.7� in �5�� and the
fact that F�1, 1

2 ; 3
2 ;z�=z−1/2 arctanh�z1/2�. One finds

F�1,n +
1

2
;n +

3

2
;z�

= �2n + 1��z−�n+1/2� arctanh�z1/2� − �
l=1

n
1

2n + 1 − 2l
z−l� .

�30�

As an example we discuss in more detail the simplest case
obtained for k=1 in Eq. �29�. This corresponds to �=2
and therefore to a triangular input density ��x�=1− �x� for
�x�
1 and zero elsewhere. This case is interesting also be-

cause for this value C̃�z� changes it character from being
algebraically divergent as in Eq. �20� to the case where the

first derivative C̃�1��z� diverges algebraically as in Eq. �21�,
while C̃�z� itself remains bounded. According to Eq. �26�, for

�=2 a logarithmic divergence of C̃�z� is to be expected. For
k=1, Eq. �29� reduces to

C̃�z� = − z −
2

3
z ln� z − 1

z
� + z�z − 1�1/2 arctanh��1 − z�−1/2� ,

�31�

and we recognize the term responsible for the logarithmic
divergence for z→1. An explicit systematic expansion of

C̃�z� around z=1 verifies this behavior:
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C̃�z� � −
2

3
ln�z − 1� −

3

2
+

�

2
�z − 1�1/2 −

2

3
�2 + ln�z − 1��

��z − 1� +
�

2
�z − 1�3/2 + O��z − 1�2� . �32�

The corresponding spectrum S���=2 Re�C̃�exp�i����− 1
3 ex-

panded around �=0 is found as

S��� = −
4

3
ln��� −

7

3
+

�

�2
���1/2 +

2�

3
��� + O����3/2� .

�33�

As expected the logarithmic divergence of C̃�z� for z→1
now manifests itself as a logarithmic divergence of the spec-
trum S��� for �→0.

More generally, the divergent behavior of C̃�z� or its de-

rivatives C̃�n��z� as given in Eqs. �20�–�22� or Eqs. �26� trans-
fers to the spectrum S��� and its derivatives S�n���� as fol-
lows:

2 � � � 
: S��� �
1

�2 − 1

2�

cos �/�
���−1+2/�, �34�

� = 2: S��� � −
4

3
ln��� , �35�

1 � � � 2:

S�1���� �
1

�2 − 1

2�

cos �/��2

�
− 1����−2+2/� sign��� ,

�36�

� = 1: S�1���� � � ln���sign��� , �37�

1

n
� � �

1

n − 1
, n = 2,3, . . . :

S�n���� �
1

��� − 1�
�

sin �/�2��
��1 + 1/��

��1 + 1/� − n�
���−n+1/�

��sign����n, �38�

� =
1

n
, n = 2,3, . . . :

S�n���� �
1

1 − �2��n + 2�in ln
1

1 − exp i�
+ c.c. �39�

The last equation implies that for �= 1
n with even integer n

the nth derivative S�n���� of the spectrum diverges logarith-
mically, S�n���→0�� �

1
1−�2 ��n+2�ln�2−2 cos ��, whereas

for odd n it exhibits a discontinuity S�n���→0�
� �

1
1−�2 ��n+2���−� sign����. One should emphasize that

the result of Eq. �34� means that in the whole range of input
densities characterized by an exponent 2���
, the output

of the Preisach transducer exhibits a divergence of the spec-
trum as �−1+� with 0���1. We thus found a new mecha-
nism for the generation of 1 / f noise. We note that the super-
position of infinitely many exponentially decaying
contributions leading to the long-time tails and to 1 / f noise
is formally similar to the superposition of Lorentzians as
discussed, e.g., in Ref. �8�. The involved physical processes,
however, are quite different and more complicated. In Fig. 1
examples for the obtained behavior of the spectral density
are shown for selected values of �. The behavior of the cor-
responding output correlation functions is provided in Fig. 2.

The degree of nonanalyticity of C̃�z� or the spectrum
S���, as reflected in Eqs. �20�–�22� and Eqs. �34�–�39� can
be understood rather easily, without doing the detailed
asymptotic expansions. The degree of nonanalyticity of a
function f�x� at x0 is defined as the smallest integer n, for
which f �n��x0�, the nth derivative of f at x0 is discontinuous.
The above results imply for the degree of nonanalyticity n of

C̃�z� at z=1, or, equivalently, of the spectral density S��� at
�=0,

�3 �2 �1 0 1 2 3
0

1

2

Ω

S�
Ω

�

�10 �8 �6 �4 �2 0

4

3

2

1

0

�1

�2

�3

ln�Ω�

ln
�S

�Ω
��

FIG. 1. The exact form of the output spectral density according
to Eq. �11� �for �=1� and Eq. �17� �for ��1� is shown for several
input distributions with charcteristic exponents � �left: linear; right:
double-logarithmic scale�. For �=3 �dotted� the spectrum S��� di-
verges like ���−1/3 and for �=2 �dot-dashed� logarithmically. For
�=1 �dot-dot-dashed� the first derivative S�1���� diverges logarith-
mically, for �=2 /3 �dashed� S�2����, and for �=2 /5 �full� S�3����
diverges like ���−1/2.
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FIG. 2. The output correlation functions as obtained by numeri-
cal Fourier transformation of the spectra in Fig. 1 �same plot style�
are shown on a double-logarithmic scale. For comparison their
asymptotic behavior according to Eqs. �14� and �23� is also shown
�full lines�. From top to bottom they decay as t−2/3, t−1, t−2 ln t, t−5/2,
and t−7/2.
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n = �min��,2� − 1�� , �40�

where �x� denotes the smallest integer greater than or equal to
x. Here we introduced, also for later generalizations, the ex-
ponent �=1 /�. To obtain this result without complicated cal-

culations it is sufficient to discuss the integrals for C̃�z=1� in

Eq. �9� and its derivatives C̃�n��z=1�. Inserting in accordance
with Eq. �16� the effective Preisach density

�̃�u� = �u−1+�, � 	 0, �41�

and the identity � dn

dzn
z

z−1+v �z=1=n ! �−1�n�v−n−1−v−n�, one ob-

tains for C̃�n��z=1� after transforming to polar coordinates

�u ,v�= �r sin � ,r cos �� the expression C̃�n��z=1�
=�2n ! �−1�n�Fn−Fn−1�, with

Fn = �
�/4

�/2

d��sin ���−2�cos ���−n−1�
0

1/sin �

dr r2�−n−2

+ �
0

�/4

d��sin ����cos ���−n−3�
0

1/cos �

dr r2�−n−2.

�42�

The integrals in Fn are seen to diverge due to the cos � term
at �=� /2 for n�� and due to the radial component at r
=0 for n�2�−1 and analogously in Fn−1. Since the smallest
integer n determines the degree of nonanalyticity, one imme-
diately gets from these inequalities the result of Eq. �40�.

D. Power-law Preisach and input density

We now generalize the above results to the case where on
a finite support, both the input density ��x� and the Preisach
density ���� take the form of a power law. We assume as in
the previous paragraph that the density of the uncorrelated
input signal is given by ��x�= �

2 �1− �x���−1 for �x�
1, and
zero elsewhere, with �	0. In addition, we now generalize
the form of the Preisach density ����, the distribution of
thresholds, to ����=���1−����−1 for 0
�
1, and zero
elsewhere, ��	0. The previous results are seen to corre-
spond to the special case ��=1. Inserting ��u�, the inverse
function of u���=2F�� ,
�, which as before is given by
��u�=1−u1/� into the formula for the effective Preisach den-
sity, Eq. �10�, one obtains for the latter exactly the form Eq.
�41� �̃�u�=�u−1+�, with �= ��

� . This implies that all results
for constant Preisach density of the previous section, such as
the power-law decay of the output correlations or the appear-
ance of 1 / f noise, apply to the case with distinct power-law
densities for the input and Preisach density, respectively, un-
der the simple replacement �→� /��.

E. Algebraically and exponentially decaying densities

It turns out that also, cases where the input density ��x�
and the Preisach density ���� have an infinite support and
decay algebraically or exponentially, can be treated exactly.
In the first case, we assume for the input density the form
��x�= �

2 �1+ �x��−�−1, with �	0, and for the Preisach density
we take the same form, but with parameter ��, i.e., ����
=���1+��−��−1 for �	0. For this input density ��x� one ob-

tains for u���=2F�� ,
�=2��

��x�dx, the result u���

= �1+��−� with inverse function ��u�=u−1/�−1. Inserting the
latter into Eq. �10� for the effective Preisach density �̃�u�,
one obtains for �̃�u� again, exactly the form of Eq. �41� with
�= ��

� . Therefore all results of Sec. III C are valid also for
algebraically decaying densities with characteristic expo-
nents � and ��, respectively, if in the formulas of Sec. III C,
� is replaced by � /��.

Interestingly, the same result is obtained also for exponen-
tially decaying densities: Assuming for the Preisach density
the form ����=�� exp�−���� for �	0, and for the input
density the functional form ��x�= �

2exp�−��x��, with �� and
�	0, we get from the latter u���=� exp�−���, and therefore
��u�=−1 /� ln�u�. Inserting this into Eq. �10� results again in
the effective Preisach density �̃�u�= ��

� u−1+��/�, and therefore
all results of Sec. III C can also be transferred to exponen-
tially decaying densities.

It is of considerable interest not only to consider cases
where both densities decay in the same way, but also cases
where one density decays exponentially and the other alge-
braically. Let us first treat an algebraically decaying input
density, i.e., ��x�= �

2 �1+ �x��−�−1, and an exponentially decay-
ing Preisach density ����=�� exp�−����. For this combina-
tion one obtains for the effective Preisach density

�̃�u� = �� exp����u−1−1/� exp�− ��u−1/�� . �43�

For this density we cannot calculate the integrals for C̃�z� in
Eq. �9� analytically. We can, however, say something about

the degree of nonanalyticity of C̃�z�. Since all derivatives of
�̃�u� at u=0 vanish, this effective density corresponds,
roughly speaking, to the case �→
 in Eq. �41�. Therefore all

derivatives C̃�n��z=1� exist and the degree of nonanalyticity

of C̃�z=1� or the spectrum S��=0� is infinite. This means

that C̃�z� and S��� are analytic, and therefore the output
correlation function does not exhibit long-time tails.

The other combination, where the Preisach density ����
is the broad distribution, i.e., algebraically decaying with
����=���1+��−��−1, and the input density ��x� is narrow,
i.e., exponentially decaying with ��x�= �

2exp�−��x��, gives for
the effective Preisach density

�̃�u� =
��

�
�1 −

1

�
ln u�−��−1

u−1, �44�

which corresponds apart from logarithmic corrections to the
limit �→0 in the effective Preisach density, Eq. �41�. This

implies that in this case already C̃�z=1� or the spectrum
S��=0� is divergent, i.e., the degree of nonanalyticity is
n=0. In this sense this combination of input and Preisach
density leads to 1 / f noise in the output signal.

F. Miscellaneous results

In view of the above equivalence results one wonders
whether there are other functional forms of the input and the
Preisach density leading to the same effective Preisach den-
sity, e.g., that of Eq. �41�, and the corresponding dynamical
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behavior. There are actually infinitely many pairs
���x� ,����� leading to the same �̃�u�. This may be seen
already from Eq. �10�, but becomes clearer by rewriting this
equation as the transformation law of the density ���� under
the monotonously decreasing map u���,

�̃�u� � �
0




�����„u − u���…d� , �45�

with u���=2��

��x�dx, or in its local form �̃�u�du

=−����d�. The equivalence of Eqs. �10� and �45� follows
from the properties of the Dirac delta distribution with its
argument being a function. So for instance, for any form of
��x� one can determine the Preisach density ����, which
leads to a given �̃�u� by

���� = �̃„u���…�u����� = 2�̃„u���…���� . �46�

As an example we consider the case, important in practice, of
Gaussian input densities ��x�= �2��2�−1/2 exp�−x2 / �2�2��,
and ask which kind of Preisach density ���� leads to the
simple form �̃�u�=�u−1+� of the effective Preisach density
as in Eq. �41�, so that the results of Sec. III C apply. For
Gaussian input ��x� the function u��� is given by u���
=erfc�� /�2�2�, where erfc�x� is the complementary error
function erfc�x�= 2

��
�x


exp�−t2�dt. Inserting this expression

for u��� into Eq. �46�, one finds for the Preisach density the
exact form

���� = 2��erfc��/�2�2��−1+��2��2�−1/2 exp�− �2/�2�2�� .

�47�

We have seen at the end of Sec. III B that the behavior of
��x�, respectively u���, for large arguments determines the
long-time behavior of the output correlations. Via our trans-
formation Eq. �10�, or Eq. �45�, this enters the formula
Eq. �9� through the near-zero u behavior of �̃�u�. The lat-
ter is in addition affected by the large � behavior of the
Preisach density ����. Therefore it is of interest to charac-
terize the large � behavior of ���� from Eq. �47�. With the
asymptotic expansion of the complementary error function
erfc�x�����x�−1 exp�−x2� �5�, one gets ������ /
�2�2�2 /���/2�1−� exp�−��2 / �2�2��. Therefore the tail of
���� is asymptotically given by ln �����−��2 / �2�2�. So
apart from logarithmic corrections the large � behavior of
���� from Eq. �47� is Gaussian with variance ��2=�2 /�.
Conversely, for given Gaussian input and Preisach density
with variance �2 and ��2, respectively, one finds an effective
Preisach density �̃�u�, which apart from logarithmic correc-
tions behaves for small u as u−1+�2/��2

. This means that the
results of Sec. III C, such as the power-law decay of Eq.
�23�, or the ���−1+2/�-spectral divergence of Eq. �34�, hold
also in this case if the exponent � is identified with �
=��2 /�2. The results for Gaussian input and Preisach densi-
ties, e.g., on the power-law decay of the output correlations,
were confirmed also by direct numerical integration of Eq.
�9� in the time domain. These numerical results, however, do
not detect logarithmic corrections to these laws, which may
be present due to the above arguments.

Here one may also wonder what is obtained if exponen-
tially decaying and Gaussian densities are combined for the
input and Preisach density, respectively. Again, only the de-
gree of nonanalyticity can be calculated: Taking the “broad”
distribution, the exponential distribution, for the input den-
sity and the “narrow” one, the Gaussian, for the Preisach
density, one finds, similar to Sec. IIIE, that the degree of
nonanalyticity is infinite and no long-time tails occur. In the
reversed case, narrow input and broad Preisach density, the
other extreme degree of nonanalyticity n=0 and correspond-
ingly 1 / f noise in the output signal is obtained. Of course,
the same scenario holds for the combination of algebraically
decaying �broad� and Gaussian �narrow� densities.

Finally, let us briefly consider the extreme case of a nar-
row distribution for the Preisach density, a distribution with a
finite support strictly contained in the support of the input
density. We denote the maximal � value for which the Prei-
sach density is nonzero as �max, which is assumed to be
strictly smaller than xmax, the maximum of the input signal.
This implies according to Eq. �45� that there exists a nonzero
value umin=u��max�=2F��max,
� below which the effective
Preisach density �̃�u� is exactly zero with the consequence
that according to Eq. �9� with the lower integration limits

umin instead of zero, again all derivatives C̃�n��z=1� are finite
and no long-time tails occur. Since correspondingly the pos-
sible relaxation rates �= �ln�1−2F�� ,
��� in Eq. �8� have a
lower bound �min= �ln�1−2F��max,
��� strictly larger than
zero, one obtains asymptotically an exponential decay of the
output correlations. Depending on the value of F��max,
�,
possibly a crossover from power-law decay to exponential
decay can be observed. The reversed situation, input support
contained within the support of the Preisach density, simply
corresponds to a rescaling of the Preisach density, with the
consequence that all of the above results on long-time tails
hold also in this case.

G. Universality classes

In the previous sections we gave explicit examples of
function classes for the input and Preisach densities for
which we could prove that they lead to long-time tails in the
autocorrelation function of the output. Here we discuss
briefly the inverse problem and ask: Given an asymptotic
decay of the output correlation function of the form

C�t� � ct−�, 0 � � � 
 , �48�

what are the systems leading to this behavior with a given
exponent �? Or, more specifically and in view of the fact that
for 0���1 Eq. �48� is equivalent to a low-frequency be-
havior of S��� of the form

S��� � a�−1+�, �49�

what are the systems resulting in 1 / f noise? The answer is
simply obtained by reverting the arguments leading from the
form of the effective density �̃�u� to the result Eq. �23�. One
finds that for a prescribed exponent � the effective density
�̃�u� must have a small-u behavior of the form
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�̃�u� � cu−1+� with � = � �/2 for 0 � � � 2

� − 1 for 2 � � � 
 ,
�

�50�

where c=c��� is a constant independent of u, or only weakly,
i.e., logarithmically dependent on u, if logarithmic correc-
tions of the long-time tails are allowed for. It is only the
small-u behavior which matters, because according to Eq. �9�
this leads to the divergence of the decay times. Correspond-
ingly, due to Eq. �45� it is the functional dependence of the
input density ��x� and the Preisach density ���� for large
arguments, which determines � or � in Eq. �50�. Requiring
a behavior �̃�u��cu−1+� for u→0 means, according to
Eq. �46� that � and � for large arguments must obey ����
�2c�������


��x�dx��−1 or its differential form

d

d�
�����/�����1/�−1 � c����� , �51�

with c� a negative constant simply related to c. The latter
differential equation has to be solved for � if one wants
to determine for a given Preisach density � the input density
leading to a desired exponent � or via Eq. �50� to a long-time
tail with exponent �. Of course, all the examples of Secs.
III C–III E fulfill Eq. �51� exactly with �=�� /�, i.e., as
an equality, while in general only asymptotic equality is
required.

IV. CONCLUSION AND DISCUSSION

We have shown analytically that the Preisach model, the
most prominent and simplest model for complex hysteresis
�9�, is under very general circumstances able to transform
uncorrelated input into output with long-time correlations.
The form of the long-time tails depends solely on the tails
of the input and Preisach density. Specifically, for symmetric
Preisach models we were able to determine the exact
asymptotic behavior of the output correlations or low-
frequency spectral densities, if both the input density and the
Preisach density belong to the same class of functions. Ex-
amples are exponentially or algebraically decaying densities.
The only requirement for the occurrence of long-time tails is

that an associated effective Preisach density behaves for
small arguments u algebraically as u−1+� with 0���
. This
behavior also determines the universality classes of input and
Preisach density combinations leading to the same long-time
tail. For small enough � the spectral density even diverges
leading to 1 / f noise in the output signal. The mechanism is
formally similar to the superposition of Lorentzians dis-
cussed in Ref. �8�. The difference lies in the more compli-
cated form of the weighting functions, which in addition are
nontrivially related to the properties of the input and the
distribution of elementary hysteresis relays. If the Preisach
and input density belong to different function classes one
obtains 1 / f noise, if the Preisach density belongs to the class
containing the “broader” functions, e.g., algebraically decay-
ing functions, while the input density is decaying exponen-
tially. In the reverse case, broad input and narrow Preisach
density, no long-time tails, but typically exponentially decay-
ing output correlations are observed.

Our results were derived for input series in discrete time
with time differences �t=1. Since long-time tails have no
characteristic scale, the calculated exponents are independent
of the value of �t. Especially, the results hold for arbitrarily
small �t, and therefore also in the white noise limit in con-
tinuous time. Obviously, if the time differences of subse-
quent input events vary stochastically around some mean
value, the average decay of the long-time tails will not be
affected. The role of correlations in the input time series has
not yet been explored analytically. However, numerical re-
sults for input according to the Ornstein-Uhlenbeck process
indicate that also in this case long-time tails are induced by
the hysteretic system �10�. Although the basic mechanisms
for long-time tails found here for symmetric Preisach models
apply in principle also for general, nonsymmetric Preisach
models, the situation there is more complicated due to the
additional degrees of freedom in the Preisach density. Espe-
cially the question of universality classes with respect to the
type of correlation decay will be explored in future publica-
tions. Finally, it will be of interest to see whether our ap-
proach can be extended to explain analytically recent results
�11� on the occurrence of stochastic resonance in systems
modeled by the Preisach nonlinearity.
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